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An examination of the tilt modes and other low-frequency

modes is made for an isolated, untilted perovskite layer, which

maps very simply to the ABX4 perovskites. A sheet of pure

tilts exists at the Brillouin Zone boundary at {�, 1
2, �}. An

instability is also found at all wavevectors which can be

described as continuously varying from pure tilts to pure layer

displacements as a function of the wavevector. Analysis is

extended by considering the stacking of layers in the I-

centered A2BX4-layer perovskites. The effect of freezing in

the commensurate tilt required to generate the Cmca tilt

system, pertinent to the modulated phases of propylammo-

nium salts, is examined. The zero-frequency modes are

restricted to two planes in the Brillouin Zone. All of the

observed wavevectors associated with modulated phases, and

the commensurately tilted propylammonium tetrachlorocad-

mate, are consistent with this calculation. The effect of full

three-dimensional connectivity is briefly reviewed for the true

ABX3 perovskites. While pure tilt incommensurates appear to

be hypothetically possible, they do not appear to have been

observed to date.
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1. Introduction

True perovskites are fully corner-bonded framework struc-

tures. They are usually represented by the formula ABX3, in

which A is a cation sitting in the interstices between fully

corner-bonded BX6/2 octahedral anions. A recent overview of

perovskites and related forms has been given by Mitchell

(2002). There is a set of phase transitions called the tilt tran-

sitions, whose driving force can be understood as being

instabilities against rotations of octahedra. There are a finite

number of periodic tilt systems. Glazer (1972, 1975) first

classified these tilts in direct space and developed a notation

scheme for them. The commensurate tilt transitions have also

been the study of a number of group-theory analyses, exam-

ining high-symmetry points of the Brillouin Zone (BZ) for

representations that transform as pure rotations, that neces-

sarily retain undistorted octahedra. Most recently this has

been done by Howard & Stokes (1998, 2002), who limited the

number of tilt transitions to 15. Aleksandrov et al. (1987) also

performed analyses based on group theory, performed a major

review of tilt systems, and developed an alternative notation

for tilt systems. All tilt transitions are caused by modes that do

not require distortion of the octahedra, although distortion

may occur due to coupling to secondary-order parameters.

Hua (1991) performed a symmetry and phonon eigenvector

study of the true perovskite CsPbCl3, examining it for tilt

modes of rigid octahedra. In addition, Giddy et al. (1993)

presented the results for the true perovskites using one of the

first applications of a phonon method developed by Dove and



coworkers (Dove et al., 1991; Hammonds & Dove, 1994) for

examining displacive transitions in framework structures. This

method also assumes that the octahedra are perfectly rigid. In

addition it makes the mathematical approximation that each

octahedron has all six corner atoms. The shared corners are

then re-imposed mathematically by exactly overlapping the

corner atoms and putting a strong force constant before them:

the split-atom method. Modes whose eigenvectors do not

require distortion of the octahedral connectivity have zero

frequency and are generally termed Rigid Unit Modes

(RUMs). These have finite but low frequency in real crystals,

but provide low-lying candidate soft modes for the crumpling

of frameworks (Dove et al., 1991; Giddy et al., 1993;

Hammonds & Dove, 1994). The rotational RUMs in a

perovskite are more traditionally referred to as tilt modes.

In addition to the true perovskites there are a number of

related structure types. The most closely related are the layer

or sheet perovskites (Fig. 1). These can form if there is

insufficient space to accommodate a given A cation in a three-

dimensional framework. Rather than remaining in an enclosed

cavity, the network structure can be envisioned as being pulled

apart into layers and the cation placed between them, leaving

unconcatenated apical atoms of the octahedra sticking out

from the layers. Layer structures exist with the general

formula ABX4 with a maximum symmetry of P4/mmm, and

A2BX4 with a maximum symmetry of I4/mmm. Several group

theory and phonon eigenvector studies have been performed

on these layer perovskites (Hatch & Stokes, 1985, 1987, 1989;

Deblieck et al., 1985; Deblieck, 1986; Bulou et al., 1983, 1984,

1987; Aleksandrov et al., 1987).

A rigid isolated polyhedron, such as a propylammonium

cation (Doudin & Heine, 1990), has 6 degrees of freedom:

three translations and three rotations. Once polyhedra are

concatenated, such as is the case for the octahedral anions in a

perovskite layer, the corner bonding acts as a constraint. If two

polyhedra possess a common corner, this imposes three

constraints in the form of the positional coordinates x, y and z

of the corner atom, so that 1.5 constraints are generated per

corner per polyhedron. Therefore, it is the inorganic anions of

the organic–inorganic layer perovskites that restrict the flex-

ibility of the system, as they are more intrinsically constrained

than the organic cations.

Framework structures consisting of octahedra are generally

a good deal less flexible than their tetrahedral counterparts

(Hammonds, Bosenick, Dove & Heine, 1998); the number of

constraints for an ABX3 perovskite is (6 � 3/2) = 9 and for

layer perovskites the number of constraints is (4 � 3/2) = 6.

Therefore, true perovskites are overconstrained and only a

small number of excess modes exist even in the highest

symmetry phase (Giddy et al., 1993; Hammonds, Bosenick,

Dove & Heine, 1998). However, from this simple counting a

layer of corner-bonded octahedra is exactly constrained and

would not be expected to be any floppier than a three-

dimensional framework built of tetrahedra, which is also

exactly constrained. The role of symmetry is highly important

since high symmetry makes some of these constraints degen-

erate and not independent (Dove et al., 1991; Giddy et al.,

1993; Hammonds & Dove, 1994) and it is only for this reason

that the sparse set of tilt modes exists along the high-symmetry

direction M–T–R in the overconstrained ABX3 perovskites

(Giddy et al., 1993). Once tilting has occurred and symmetry is

reduced it is to be expected that the number of such zero-

frequency modes will decrease (Dove et al., 1991; Giddy et al.,

1993; Hammonds & Dove, 1994).

1.1. Organic–inorganic perovskites

There is a class of perovskites in which the A cation is

replaced by a molecular cation, usually an amine or diamine.

Methylammonium (MA), formamidinium (FA) and tetra-

methylammonium (TMA) have all been reported as occurring

in true perovskite structures (e.g. Depmeier, 1981; Poglitsch &

Weber, 1987; Mitzi & Liang, 1997; Lee et al., 2003; Swainson et

al., 2003; Chi et al., 2005). Organic chains can essentially be

arbitrarily long, so the majority of organic–inorganic perovs-

kites crystallize in a layer perovskite form, as only the smallest

chained amines can fit inside the three-dimensional frame-

work structure of the true perovskites. There is, therefore, a

great structural variety of these forms and many show inter-

esting electrical properties (Mitzi, 2001). This class of

perovskites has become known as the organic–inorganic

perovskites.

The short-chained amine cations can be quite rigid. Even

for chains such as propylammonium (PA), whose salts crys-

tallize as layer perovskites, the cation can be viewed as rela-

tively rigid (Doudin & Heine, 1990). It is only as the chain

length increases that the organic cations possess a high degree

of flexibility (e.g. Barman et al., 2003). For the methylammo-

nium lead halides, Rietveld refinements and crystal chemical

trends have shown that the molecular cations are more rigid

than the octahedra; it is the octahedra, approximated as rigid

units in both the RUM and group theory approaches to tilt

transitions (Glazer, 1972, 1975; Bulou et al., 1983, 1984, 1987;

Deblieck et al., 1985; Deblieck, 1986; Hatch & Stokes, 1985,

1987, 1989; Aleksandrov et al., 1987; Hua, 1991; Dove et al.,

1991; Giddy et al., 1993; Hammonds & Dove, 1994; Howard &

Stokes, 1998, 2002), that distort in preference to the molecular

cations in the low-temperature phases (Swainson et al., 2003;

Chi et al., 2005). This observation in the ordered structures
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Figure 1
Aristotypes of the ABX4 layer perovskite with symmetry P4/mmm (left),
A2BX4 (middle) with symmetry I4/mmm, and true perovskites (right)
with symmetry Pm3m. The A cations are omitted.



agrees with the dynamics measured by Raman spectra, which

show that even the lowest-frequency Raman-active internal

mode of the MA cation is higher than the highest-frequency

internal mode of the PbCl6 octahedra of MAPbCl3 (Maalej et

al., 1997, 1999). Despite this, the ordered phases are related to

the tilt modes, with symmetries sometimes slightly lower than

those predicted for perovskites with simple cations, owing in

part to superlattice formation as the cations order (Chi et al.,

2005); these are systems in which the tilt transitions, intrinsic

to the connectivity of the inorganic layer, are coupled to

orientational-ordering transitions, which are intrinsic to the

organic cations.

1.2. Incommensurates

An examination of the true perovskites reveals several

reported to date with incommensurate structures, e.g.

MAPbCl3 and TMAGeCl3 (Depmeier, 1981; Fütterer et al.,

1995; Kawamura & Mashiyama, 1999). Kawamura &

Mashiyama (1999) reported a ‘superstructure’ for an inter-

mediate phase of MAPbBr3. The structure of TMAGeCl3 has

been very well characterized (Depmeier, 1981; Fütterer et al.,

1995). The incommensurate phases do not appear in analo-

gous inorganic perovskites with simple cations. In the incom-

mensurate structures commonly reported in layer perovskites

with the n-propylammonium cation, modulations appear at a

variety of wavevectors. In several cases more than one

incommensurate phase occurs on cooling (Muralt, 1986; Kind

& Muralt, 1986; Muralt et al., 1988).

Incommensurate structures consist of a regular three-

dimensional lattice upon which a distortional wave has been

superimposed and where the ratio of the wavelength to that of

the unit-cell dimensions is not a rational number. In three

dimensions the structure is therefore aperiodic, although these

structures may be viewed as being periodic in higher dimen-

sions (de Wolff et al., 1981). One mode of generation of

incommensurates is due to the instability at the electronic

Fermi surface. As organic–inorganic perovskites can show a

variety of electronic transitions (Mitzi, 2001) this seems a

possible mode of origin, but it does not explain the prevalence

across many different metals in the same series, e.g. the n-

propylammonium salts show incommensurate phases with

many metal cations (Chapuis, 1978; Muralt, 1986; Kind &

Muralt, 1986; Etxebarria et al., 1988; Doudin & Chapuis, 1988).

Another mechanism for incommensurate transitions, not

related to electronic instabilities, is the condensation of soft

phonons at a position other than a zone centre or boundary

position of the BZ. Phonons with intrinsically low frequencies

are ideal candidates for involvement in these transitions.

These candidates include tilt and general acoustic modes.

The general picture of incommensurate phases includes

competition between two interactions or between two

ordering processes, both of which transform as the same

symmetry (Levanyuk, 1986). The model of Heine & McCon-

nell (1981) may provide a general explanation for the

incommensurate transitions in both layered and true perovs-

kites. In this model a low-lying branch, which may be an

acoustic mode, interacts with a descending low-frequency

optic mode. The symmetries of these two modes are different

at the zone centre and boundary, but identical at all inter-

mediate wavevectors. An anti-crossing interaction mutually

repels these two phonon branches, causing the softening at

non-high symmetry points of the BZ and incommensurate

transition. The resulting distortion may be of mixed character

in terms of the eigenvectors of the two modes. This model

gives a very general description of the transition, but a

microscopic basis can be gained if one considers the possible

low-frequency modes that may be involved. In addition, the

symmetry constraints for interaction can provide information

which is useful in interpretating the transition.

Doudin & Heine (1990) proposed a microscopic model for

PA tetrachlorometallates that concentrated on the interac-

tions between the PA chains. This suggested that the PA chains

provide the driving force for incommensuration in this

compound, a view that has support from NMR studies (Kind

& Muralt, 1986). The pitch of the alkyl chains is determined by

the conformation of the octahedral layer to which the chains

start to hydrogen bond via their amine groups on cooling. This

chain spacing is not at a minimum in energy (Doudin & Heine,

1990). Moving the chains closer or further apart, which can be

achieved by an incommensurate modulation of the chains, can

lower the energy of the system. This is achieved by coupling to

the buckling of the layers, in such a way that neighbouring

layers are out of phase. However, no detailed examination of

the response of the layers appears to have been made

previously.

This work was started in order to see whether the RUM

approach, which has proved to be very successful in the

analysis of framework structures, could shed some light on the

origin of the number of incommensurate phases reported in

PA salts and the flexibility of the wavevectors. A search of

various types of low-frequency modes intrinsic to the various

perovskite structure types is made to find candidates for

participation in incommensurate transitions. The treatment of

the incommensurate structures of A2BX4 has historically

concentrated on the interactions between the rigid amine

chains (Muralt, 1986; Kind & Muralt, 1986; Muralt et al., 1988;

Doudin & Heine, 1990) and has not explicitly treated the

response of the perovskite layer. As the interactions between

the organic chains are transmitted to the inorganic layers via

hydrogen bonds, there is an implicit assumption that the

perovskite layers are flexible at arbitrary k.

In the following, the opposite approach is taken; the amine

cations are ignored and the low-frequency modes of perovs-

kite layers are examined. It is shown that an untilted layer is

indeed flexible at all points in the BZ. However, Cmca

commensurately tilted layers, from which the modulated

phases descend, show a distinct anisotropy in the form of two

soft planes.

2. Methods

The split-atom lattice dynamics code CRUSH of Hammonds

& Dove (1994) was used to analyze the zero-frequency modes
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as a function of wavevector. Ideal octahedra were used in

every case. The eigenvectors of the split-atom phonon spec-

trum were compared with those given from the group analysis

program ISOTROPY (Stokes & Hatch, 2002). At any given

point in the BZ the irreducible representations were examined

to see how the basis vectors transform for the centres of the

octahedra (e.g. as rotations and translations), using the

approach of Howard & Stokes (1998). Compatibility relations

were also calculated using this program. The labelling used for

the mode symmetry is that of Miller & Love (1967), except at

the zone centre where Mulliken labels for the representations

are also given. Owing to the ease of illustration the method

will be first applied to the ABX4 perovskites and then to the

A2BX4 and ABX3 perovskites.

3. Intrinsic instabilities for isolated perovskite layers in
a primitive tetragonal lattice

A single perovskite layer of ideal octahedra was modelled

using CRUSH (Hammonds & Dove, 1994). When placed in a

three-dimensional lattice, the simplest way of packing these

layers is in a primitive tetragonal lattice, whose maximum

symmetry is P4/mmm. This model therefore directly maps to

the ABX4-layer perovskites, which have this symmetry in their

untilted (aristotype) form. The BZ of the primitive tetragonal

lattice is shown in Fig. 2.

In any structure there is always one set of zero-frequency

solutions, which are the �-point acoustic modes, for which all atoms move in-phase. In this hypothetical model there is no

interaction between layers stacked along c. This results in the

acoustic modes having zero-frequency along �–�–Z (Table 1,

Fig. 2). These represent the longitudinal and transverse

translations of whole layers: Tz and (Tx, Ty), against which

there is no restoring force. Clearly, as soon as any coupling is

introduced these would gain a finite frequency away from the

� point. Bulou et al. (1983, 1984, 1987) have shown that once

coupling is introduced the acoustic dispersion in ABX4

perovskites along this direction remains small.

The CRUSH calculations along the zone-boundary M–V–A

show zero-frequency modes. These have the characteristics of

pure rotations (tilt modes) around the three crystal axes, Rx,

Ry and Rz. Hua (1989) showed that the symmetry of the

vibration modes along M–V–A are ‘essentially the same’.

Similarly, pure tilts are found at the high-symmetry points X

and R, and along the W line linking them (Fig. 2, Table 1).

Deblieck et al. (1985) and Deblieck (1986) examined the

irreducible representations that correspond to the commen-

surate tilt modes at points of high symmetry in the BZ. The

results of their analyses were given in terms of the convention

of Bradley & Cracknell (1972), so that the labelling of the

irreducible representations differs from those presented in

Table 1, but the results are otherwise identical. These tilts at

the M, A, X and R high-symmetry points represent special

points on sheets of pure tilts, of symmetry F2, with wavevectors

{�, 1
2, �} (Fig. 2, Table 1).

The CRUSH calculations also showed one zero-frequency

mode for all wavevectors in the interior of the BZ. As the

calculation is followed into the interior of the BZ from the F2
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Figure 2
Brillouin Zone (BZ) of the primitive tetragonal lattice. Left: The outer
surface of the BZ with high symmetry points (closed) and directions
(open) shown as circles. The surface F on which a general plane of tilts
occurs is shaded red. Right: The lines of pure displacements of the �–�–
Z layers. Buckling instabilities exist at all intermediate wavevectors.

Table 1
Points, lines and planes of zero-frequency modes in the BZ of an ideal
ABX4 perovskite with P4/mmm symmetry.

The nature of the eigenvectors of selected zero-frequency modes are given,
where T represents the translation along an axis and R the rotation about an
axis. Those labeled ‘mixed’ have complex eigenvectors with components of Tz

and (Rx, Ry) and represent buckling instabilities.

k Nature Symmetry Nature Symmetry

� {0,0,0} Tz ��3 A2u (Tx, Ty) ��5 Eu

� {0,0,�} Tz �1 (Tx, Ty) �5

Z {0,0,12} Tz Z�3 (Tx, Ty) Z�5

M {1
2,

1
2,0} (Rx, Ry) Mþ5 Rz Mþ3

V {1
2,

1
2,�} (Rx, Ry) V5 Rz V4

A {1
2,

1
2,

1
2} (Rx, Ry) Aþ5 Rz Aþ3

X {0,12,0} (Rx, Ry) Xþ3
W {0,12,�} (Rx, Ry) W3

R {0,12,
1
2} (Rx, Ry) Rþ3

Y {�,12,0} (Rx, Ry) Y2

F {�,12,�} (Rx, Ry) F2

T {1
2,�,

1
2} (Rx, Ry) T2

S {�,�,12} Mixed S3

U {0,�,12} Mixed U3

� {0,�,0} Mixed �3

� {�,�,0} Mixed �3



sheet of pure tilts, it is found that these modes are transverse

acoustic (TA) modes for which the layer is modulated with

displacements along c. An instability at every k is not

unknown even in three-dimensional framework structures and

has been reported in some zeolites (Hammonds, Heine &

Dove, 1998). The highest-symmetry silica framework, �-cris-

tobalite, shows general planes of RUMs (Giddy et al., 1993;

Swainson & Dove, 1993).

The projection of an isolated perovskite layer viewed down

b is shown in Fig. 3. When |k| = a*/2, � = 2a, the centres of the

octahedra sit on nodes of this transverse acoustic wave and

remain in the plane of the perovskite layer so that the

displacement eigenvectors become pure tilts of the octahedra

(Rx, Ry). However, as � increases and |k|) 0, the octahedra,

which must remain rigid and retain their interconnectivity with

their neighbours, take an increasing component of displace-

ment along the layer normal, c, giving potential buckling

instabilities. In untilted ABX4 crystals this corresponds to the

compatibilities listed in Table 1, showing that the F2 tilts

become pure z-translations of entire perovskite layers for k =

(0,0,�), i.e. the ��3 –�1–Z�3 acoustic modes (Table 1, Figs. 2 and

3). The nature of these modes at arbitrary k is therefore rather

different from the RUMs in a three-dimensional framework in

which such buckling modes are not available.

There is an additional line of tilt modes, Mþ3 –V4–Aþ3 , having

the pseudovectors of rotation Rz parallel to the trace of the

line M–V–A. These modes are not compatible with the class of

buckling modes, but are a separate class of tilts in the layer

perovskites. CRUSH calculations across the BZ show that Mþ3
is also a zone-boundary transverse acoustic mode, but has

finite frequencies at all intermediate wavevectors and which

forms one component of the ��5 (Tx, Ty) mode at the zone

centre.

Schematics of the eigenvectors of the pure tilt modes at high

symmetry points of the BZ boundary for ABX4 perovskites

are shown in Figs. 4–6. The eigenvectors of the Xþ3 –W3–R3
+ tilt

modes given by ISOTROPY (Fig. 4a) show contributions from

the star of vectors, whereas by studying individual k points in

CRUSH one sees contributions from individual branches;

observing pure Ry tilts at (1
2, 0, 0) and pure Rx tilts at (0, 1

2, 0)

(Fig. 4c).
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Figure 3
Illustration of the buckling instability in an isolated perovskite layer. The
layer is shown edge-on viewed down the b axis. A transverse acoustic
wave with displacements along c is shown with the wavevector parallel to
a*. For the special case where k = a*/2, � = 2a, the centres of mass sit on
nodes and the modes are pure Ry tilts (top). For the general case where k
< a*/2, � > 2a, the centres of mass of the octahedra are displaced, while
the octahedra rotate to maintain the connectivity, thus buckling the layer
(bottom).

Figure 4
Eigenvectors of the Xþ3 and Rþ3 pure tilt phonons. (a) The pseudovectors
represent the directions of clockwise rotation in an isolated layer of 2� 2
octahedra. Vertical displacements of the shared corner atoms are shown
by + and � symbols. (b) The relative phasing of neighbouring layers in a
P-tetragonal lattice: Xþ3 transforms as layers with eigenvectors in-phase,
Rþ3 out-of-phase and W3 as continuous intermediate phasings. (c) The
eigenvectors associated with a single arm of the Xþ3 tilt phonon at (0, 1

2, 0)
(left),(1

2,0,0) (middle) and the star of vectors (right).

Figure 5
Eigenvectors of the Mþ3 and Aþ3 pure tilt phonons. (a) The directions of
rotation about the c axis, Rz, in an isolated layer of 2 � 2 octahedra are
shown. (b) The relative phasing of neighbouring layers in a P-tetragonal
lattice: Mþ3 transforms as layers with eigenvectors in-phase, Aþ3 out-of-
phase and V4 as continuous intermediate phasings.



3.1. A direct space picture of the origin of a sheet of pure tilts

To demonstrate the freedom of phasing of tilts that exists

between neighbouring perovskite layers, a projection of an

isolated layer displaying the rotational eigenvectors is shown,

along with a schematic of the relative phasing of the tilts

between the two layers stacked along c. It is clear that the

phasing of tilts, Rx, Ry and Rz, between isolated layers can be

random with no energy penalty. Hence, the pure tilts at M and

A are linked by the V line of tilts along c*, and the pure tilts at

X and R are linked along W (Fig. 2, Table 1).

The degree to which the freedom of tilt phasing exists

within a single layer is not immediately obvious. A schematic

of the freedom of phasing of Ry tilts is shown in Fig. 7. Owing

to the relatively few constraints in a two-dimensional net, a

choice of +Ry for one octahedron only ensures that the octa-

hedra in the x-column at �a have �Ry. Octahedra linked at

�b have no automatically imposed sense of Ry. Therefore,

complete freedom of phasing of Ry tilts exists between

neighbouring x columns. This corresponds to the line of tilts

joining Xþ3 and Mþ5 with symmetry Y2, and the line Rþ3 –T2–Aþ5 .

The existence of anti-correlated Ry tilts running along

columns in x, with the complete freedom of phasing of Ry tilts

in neighbouring columns within the same perovskite layer and

between individual layers stacked on c, is the origin of the

sheets of Ry tilts at k = (�1
2, �, �). The degenerate Rx tilts occur

in F2 sheets (�, �1
2, �).

4. Relationship of the tilt systems of the ABX4 layer
perovskites to those of A2BX4 layer perovskites

Another way of stacking isolated perovskite layers is to do so

by relating one layer to the next by an I-centre. This is char-

acteristic of the A2BX4 layer perovskites. One can generate

this by sliding alternate layers of the ABX4 structure along [1
2,

1
2, 0]. From the point of view of the fundamental instabilities of

the layers, as the approximation is made that each layer is

independent, there is no real significance to how they are

stacked; the plane of pure tilt instabilities still exists with � =

2a (|k| = a*/2), determined by the connectivity of octahedra

within each individual layer. However, more complicated

phasings of the motions of the octahedra exist between the

layers. The relationship between the BZs of the ABX4 and

A2BX4 perovskites is shown in Fig. 8. The N–Q–P–W–X plane

contains the plane of pure tilts in this BZ. There have been a

number of papers concerning the group theory of A2BX4 layer

perovskites determining the possible commensurate tilt

systems (Hatch & Stokes, 1985, 1987, 1989). Hatch & Stokes

(1987) gave eigenvectors for P5, Xþ3 , Xþ4 and Nþ1 . The P, N and

X points are intersections of the plane of tilts with high-

symmetry points of the BZ boundary (Fig. 8b). The X–W–P

lines (Fig. 8) lie along the intersection of two planes of tilts –

the analogue of the M–V–A line in the ABX4 perovskites (Fig.

2).

The eigenvectors of the pure tilts P5–W3–Xþ4 and P5–W4–Xþ3
are the analogues of the Mþ5 –V5–Aþ5 modes in the ABX4

perovskites. Similarly the Nþ1 commensurate tilt is the

analogue to the Xþ3 –W3–Rþ3 line of tilts in the ABX4 perovs-

kites.

The line of modes P4–W2–Xþ2 (Hatch & Stokes, 1989) have

eigenvectors that can be represented by Rz tilts, whose rota-

tional pseudovectors are parallel to the trace of the P–W–X

line. These are the analogues of the class of modes Mþ3 –V4–Aþ3
of the ABX4 perovskites.

4.1. Incommensurate n-propylammonium A2BX4 layer
perovskites

Many n-PA metallates show incommensurate phases on

cooling. These are based around the A2BX4 layered perovs-

kites with maximum symmetry I4/mmm. PA2MnCl4 shows the

sequence of transitions �–�–�–�–"–�, where � is the I4/mmm
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Figure 7
Origin of the sheet of Ry tilts at a*/2. Eigenvectors of the acoustic
phonons of Xþ3 symmetry [a single arm at (1

2, 0, 0)], Mþ5 (right), and the
line joining the two, Y2 (middle). Pseudovectors representing the axes of
rotation (tilt) of the type Ry are shown. By choosing a sense of rotation of
Ry on one octahedron, the only resultant action is that the octahedra
along �a has �Ry. There is no automatically imposed choice of Ry for
octahedra connected at � b, so that a continuous variation in-phase of Ry

can exist, representing the line of modes with symmetry Y2. These same
eigenvectors exist for arms of Rþ3 –T2–Aþ5 with wavevectors along the (1

2, �,
1
2) line, although in this case alternate layers are out-of-phase.

Figure 6
Eigenvectors of the Mþ5 and Aþ5 pure tilt phonons. (a) The pseudovectors
represent directions of clockwise rotation in an isolated layer of 2 � 2
octahedra. Vertical displacements of the shared corner atoms are shown
by + and � symbols. (b) The relative phasing of neighbouring layers in a
P-tetragonal lattice: Mþ5 transforms as layers with eigenvectors in-phase,
Aþ5 out-of-phase and V5 as continuous intermediate phasings.



maximum symmetry and � is Cmca, related by a pure tilt

transition to �. (It should be noted that many authors have

chosen the orientation of the cell for convenience to be Abma,

to keep the layers stacked along c. In this paper the layers in

the � phase are considered to be stacked along b in the

standard Cmca orientation and the discussion below reflects

this.) Phase � is a re-entrant of phase �, � and " are incom-

mensurate phases, and � is a low-temperature commensurately

modulated phase (Depmeier, 1981, 1983; Depmeier & Mason,

1978). Existing theoretical treatments of the origin of the

incommensurate modulations in these salts have implicitly

assumed the inorganic layer is flexible at arbitrary k. As shown

above, this assumption is valid for the untilted sheet. However,

as a reduction in symmetry happens once a commensurate tilt

occurs (Dove et al., 1991; Giddy et al., 1993; Hammonds &

Dove, 1994), it is reasonable to examine the degree of flex-

ibility after tilting, as the incommensurate phases do not

descend directly from the untilted I4/mmm structure, but from

the tilted Cmca structure.

The fact that incommensurates are seen for a wide variety

of metals (Chapuis, 1978; Muralt, 1986; Doudin & Chapuis,

1988, 1992; Etxebarria et al., 1988; Abid, 1994) indicates that

the incommensurate transition is not driven by instabilities at

the electronic Fermi surface. Also, the fact that they are not

observed in either the analogues with simple cations or longer-

chained cations implies that the packing of the relatively rigid

PA chains drives the transition (Muralt, 1986; Kind & Muralt,

1986; Depmeier, 1981, 1983; Depmeier & Mason, 1978). So, to

date, theoretical treatments of the incommensurate phases of

PA salts have concentrated on these amines. Yet, the upper

I4/mmm–Cmca �–� transition of PA2MnCl4 can clearly be

related to a classical tilt transition in the A2BX4 structure

(Hatch & Stokes, 1985, 1987, 1989). The same is true of the

transition to the Pbca commensurately tilted, low-temperature

phase of PA2CdCl4 (Chapuis, 1978; Doudin & Chapuis, 1988,

1992).

A calculation was performed for a layer, which had been

subjected to a 5� [110] tilt with eigenvectors in the layer as

shown in Fig. 6(a). There is a marked reduction in the number

of zero-frequency modes. Instead of an instability at every k,

there remain only two orthogonal planes of wavevectors

containing zero-frequency modes, and special directions and

points lying in these planes. These planes define wavevectors

associated with all the possible incommensurate phases in

these systems, if buckling modes of the layers are involved.

Table 2 shows the corresponding symmetry labels for the

A2BX4 layer perovskites, laid out in the form of a partial

compatibility table, showing only those components with zero
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Table 2
Labels, according to the convention of Miller & Love (1967), of the
irreducible representations for the zero-frequency modes found for
A2BX4 layer perovskites in the Cmca tilt system.

The left column shows the physical transformation of the irreducible
representations at the �-point. A partial compatibility is given, only showing
the zero-frequency modes at each point. The labels H1 and H3 are reversed
with respect to the convention used by Muralt (1986). The �þ2 –�4–Yþ2 modes
remain pure tilts.

Tx ��3 �4 Y�3
Ty ��4 �1 Y�4 H1 T1 B1 B3

Tz ��2 �3 Y�2 H3

Ry �þ2 �4 Yþ2

Ty ��4 �4 P1 S1

Tz ��2 �3 P2

Ty ��4 K1 �3 Z1 B1 B3

Tz ��2 K1 �1

Figure 8
(a) The Brillouin Zone (BZ) of the I-centered layer perovskites. (b)
Section of the BZs of the P-tetragonal ABX4 and I-tetragonal A2BX4

perovskites. The layer spacing of A2BX4 is twice that of ABX4 in this
construction. Open circles represent the �-points of the P-tetragonal BZ.
Closed squares represent the �-points of the I-tetragonal BZ. Hexagons
represent the zone boundaries of the I-tetragonal BZ. Bold vertical lines
represent the trace of the surface of pure tilts. Closed circles at the
intersection of this trace with the I-tetragonal BZ boundary surface
represent the N-points of this BZ. On the right hand side, the outline of
the P-tetragonal BZ is shown in dotted lines.



frequency. The distribution of these modes in the ABX4 and

A2BX4 (tilt systems Pmna and Cmca, respectively) is shown in

Fig. 9. For Cmca, the two planes P and K, in which the

potential soft modes lie, generally have two distinct modes:

there are two modes with K1 symmetry, one mode with P1 and

one mode with P2 symmetry. These modes become degenerate

at certain zone-boundary positions, e.g. S, Z, B and T.

The phase transitions in these salts occur both due to the tilt

instabilities in the layers and the ordering of the PA chains in

PA2MnCl4. PA2CuCl4 shows an identical series of transitions

(Etxebarria et al., 1988). In the high-temperature � phase the

amine groups sit in a site which is fourfold coordinated by

apical halide atoms, with all four possible orientations equally

occupied. Upon cooling the ordering of the cations begins and

is correlated to the sequence of phase transitions observed; in

the � phase the cation is now partly ordered across the four

sites. In the � phase all four sites become inequivalent and the

PA chain becomes fully ordered (Kind & Muralt, 1986).

�-PA2MnCl4 is characterized by transverse modulations

running along c with amplitudes parallel to the b layer axis.

The principal wavevector associated with this is k = (1/6 + �)c*

+ b* (Muralt, 1986; Kind & Muralt, 1986; Muralt et al., 1988)

and lies on the surface of the BZ along the isolated H line of

the buckling modes (Fig. 9). Instead of a distinct lock-in

transition, the order parameter, the amplitude of the incom-

mensurate distortion, continuously decreases to zero. Thus,

the Cmca � phase ‘reappears’ as the � phase. The second

incommensurate phase, ", appears below this as a second-

order transition with k = (1/3 + �)a* (Kind & Muralt, 1986).

The wavevector for this mode is also shown in Fig. 9, lying

along the � direction, a special direction lying in the P plane

{�, �, 0}.

Interestingly, the lock-in to the � phase occurs at yet

another wavevector, k = (a* � b*)/3, rather than at 1/3a*

(Depmeier & Mason, 1978; Depmeier, 1981, 1983; Muralt,

1986; Kind & Muralt, 1986). Although it lies along the �–S line

(Muralt et al., 1988), this wavevector does not lie on a special

line of symmetry, but generally in the P plane of zero-

frequency buckling modes. Muralt et al. (1988) performed

extensive symmetry analysis and noted that the irreducible

representations responsible for the " phase and the � phase are

compatible. From this approach the physical reason for this

compatibility is clear: the entire P plane is potentially soft and

the � line of potential soft modes is a line of higher symmetry

lying in this general plane.

The Weissenberg study of the � phase by Depmeier (1981)

reported satellites associated with the modulation occurring at

A1 (h, k, l��1), where h + k = 2n + 1, A2 (h, k, l� 2�1), where

h + k = 2n, and B (h, k, l � �2), where h + k = 2n + 1. The A2

satellites are thought to be second-order reflections of the

modulation or possibly second harmonics of the primary

modulation (Muralt, 1986). While it could be that the B

satellites are either pure artefacts, as suggested by Muralt

(1986), or induced by stress on the sample, it is noticeable that

they also lie along the H line of modes (Table 2; Fig. 9), and

there is no limit to the number of modulations of octahedra in

a sheet along this direction in k-space. It has been reported

that weak satellites were also observed in h0l sections,

implying that there was a longitudinal component to the mode,

which had been previously presumed to be purely transverse

(Depmeier, 1981). Table 1 shows that the BZ volume-filling

buckling instabilities in the untilted system are all compatible

at the �-point to the mode transforming as displacements

along the layer axis. However, that is not the case for Cmca.

The H1 mode is ultimately compatible with Ty displacements

normal to the layer and H3 to Tz displacements. Following the

change in the BZ after the commensurate tilt transition into

Cmca, the H3 mode is the buckling mode ‘folded back’ from

the H1 mode at the T zone boundary, where both modes are

degenerate and of symmetry T1. At general points along H,

both H1 and H3 buckling modes have components of displa-

cement (Tz, Ty) and rotation (Rx) of the octahedra and

therefore both show transverse and longitudinal components

with respect to the layers.

PA2CdCl4 also shows a transition from Cmca at room

temperature to an incommensurate phase at 180 K with the

wavevector k = 0.42a*, lying along �, as in the " phase of

PA2MnCl4, to Pbca at 158 K (Chapuis, 1978; Doudin &

Chapuis, 1988, 1992). The refinements of this incommensurate

phase also show rotations of fairly rigid octahedra coupled

with modulated layer displacements. Unlike the Mn salt, the

low-temperature ordered state is not a commensurately

modulated phase but is associated with ordering associated

with the Yþ2 tilt mode of Cmca (Table 2; Fig. 9).
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Figure 9
The distribution of RUMs through the Brillouin Zone (BZ) of
commensurately tilted layers of ABX4 and A2BX4 perovskites. The
phases these correspond to are Pmna (left) and Cmca (right),
respectively. A set of pure Ry tilts runs along �–�–Y. All other modes
are buckling modes. Two general planes of modes lie in {�, �, 0} and {�, 0,
�}. In the BZ of Cmca the wavevectors of the �, " and � modulated phases
of PA2MnCl4 are shown. The PACC symbol refers to the lowest-
temperature phase of PA2CdCl4, which is commensurately tilted in the
space group Pbca and is associated with ordering at the Y-zone boundary
point. The wavevector associated with the " phase of PA2MnCl4 also lies
in the same direction as the single incommensurate phase reported for
PA2CdCl4. The wavevector of the commensurately modulated � phase is
free by symmetry to vary within the P plane.



Early on in the investigation of these phases, the two-mode

model of Heine & McConnell (1981) was suggested as a means

of understanding the origin of the incommensuration, where it

was suggested that the two modes were the rotation of the

octahedra and the displacement of the layer (Doudin &

Chapuis, 1988). This work has shown that tilting and layer

modulation are component eigenvectors of a single phonon

mode native to a layer perovskite (Table 1) and so can only

form one mode in such a model. The later model of Doudin &

Heine (1990) provided a microscopic view of packing of the

PA chains, as the origin of the incommensuration. It is the

interaction of the cation packing (the primary driving mode)

with the buckling instabilities (the secondary lattice mode)

that is the origin of the incommensurate structures in these

layer perovskites.

5. Relationship of the ABX4 layer perovskites to the
ABX3 true perovskites

The relationship between the BZs of the P-tetragonal ABX4

and P-cubic ABX3 perovskites is simple to visualize as the

fusing of layers (Fig. 1). This is equivalent to adding more

constraints; fewer degrees of freedom are expected for the

octahedra, so the k-space distribution of zero-frequency

modes is much more limited in this case (Dove et al., 1991;

Giddy et al., 1993; Hammonds & Dove, 1994).

Tilt modes propagating along k = (1
2,

1
2, �) tilt octahedra in

the xy plane. This imposes no restrictions on the values of Rz

of the octahedra in neighbouring layers fused along c, i.e. they

retain zero frequency. This is one of the lines of Mþ3 –T4–Rþ4
pure tilts (Giddy et al., 1993; Howard & Stokes, 1998). Note

that the general characteristic of these modes is that the

pseudovectors representing the directions of rotation of the

octahedra are parallel to the M–T–R line (Fig. 10).

One can view the Mþ3 –T4–Rþ4 line of Rz tilts as being

inherited from the isolated line of Mþ3 –V4–Aþ3 tilts of the

ABX4 perovskites (Fig. 2, Fig. 10). This leaves open the rela-

tionship of the other two lines of degenerate tilt modes in

ABX3 to those in ABX4 (Fig. 2, Fig. 10): those tilts with

eigenvectors Rx and wavevectors (�, 1
2,

1
2), and those with

eigenvectors Ry with wavevectors (1
2, �,

1
2). Consideration of the

Ry tilt mode of a single layer with k = a*/2 in Fig. 3(a) shows

that it would be impossible to fuse two layers together unless

the waves were exactly out of phase in the ac plane, thereby

requiring a component to the wavevector of c*/2. This limits

the dispersion of Ry tilts of rigid octahedra to the wavevectors

(1
2, �,

1
2). This corresponds to the Rþ3 –T2–Aþ5 line of modes in

ABX4 (Table 1, Fig. 2, Fig. 7), the only part of the F2 plane of

tilts that survives the constraint of fusion. Experimental

evidence for the shallow dispersion of modes along the BZ

edges has previously been obtained from inelastic neutron

scattering (Shapiro et al., 1974) and these lines have also been

seen in computer simulations (Stixrude et al., 1996).

5.1. Incommensurate organic–inorganic true perovskites

The best structurally determined, incommensurate, true

perovskite appears to be TMAGeCl3. The � phase of

TMAGeCl3 has an incommensurate wavevector of 0.14b*

when indexed in the Pnam orthorhombic phase (Fütterer et

al., 1995), equivalent to 0.14c* in Pnma, the setting used in the

descriptions and analysis below. Fütterer et al. (1995) gave the

following details: There is a transverse distortion with a

maximum displacement along b, and the Ge and Cl displace-

ments are close to being in-phase. Both GeCl3 and TMA can

be regarded as near rigid units and it seems very difficult to

describe this transition in terms of the activity of a lone pair on

Ge2+. The motion appears to be consistent with layers of the

two ions oriented perpendicular to a. The same bc shearing is

involved between the orthorhombic and incommensurate

phase as between the orthorhombic and the lock-in mono-

clinic phase.

This description is consistent with the distortion from a

frozen transverse acoustic phonon, propagating along c* with

displacement eigenvectors along b. At k = 0.14c*, relatively

close to the �-point, both the TMA and GeCl6 ions would still

be nearly rigid bodies, the displacements along b and

components in a being unaffected.

Table 3 shows the �-point irreducible representations and

the basis functions that transform as pure translations along

the cell axes, indicating the symmetries of the acoustic

phonons. A compatibility table is given for acoustic phonons

propagating along the cell directions. At k = 0.14c* the

symmetry of this acoustic would be �3. Therefore, the other
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Figure 10
The Brillouin Zone (BZ) of the P-cubic true perovskites. Pure tilts are
found along all the BZ edges (after Giddy et al., 1993). The special points
R and M and the line T are shown. The natures of the tilts are labelled
along the edges: e.g. Rz propagating along (�1

2, �
1
2, �).



mode involved in incommensuration would be a low-

frequency optic, presumably associated with the TMA cation

ordering. This must transform as �3 at k = 0.14c*, but to

something other than B2u at the �-point, restricting the �-

point symmetry of the low-lying optic to B3g, which may be

measurable by Raman spectroscopy as it transforms as �yz

(Table 3).

The incommensurate structure of MAPbCl3 has not been

determined but the positions of the incommensurate satellites

do not lie along the T directions of the cubic precursor (Fig.

10). This cell appears to be quasi-tetragonal with incommen-

surate satellites approximately at (1
3,0,0) of the cubic lattice

(Kawamura & Mashiyama, 1999). Pure tilt modes cannot be

part of the incommensurate distortion. It seems likely that this

would also involve an acoustic mode coupled to an ordering of

the MA cation, in a manner similar to TMAGeCl3. A full

refinement of the incommensurate phase would be needed to

confirm this.

6. Conclusions

A survey of the potential instabilities of untilted, isolated

perovskite layers has been performed. There is a potential

instability at all wavevectors in the aristotype structure. The

nature of the eigenvectors of the zero-frequency modes vary

continuously from pure tilts at (�1
2, �, �), (�, �1

2, �) to pure

layer translations along the �–�–Z line, through modes of

mixed buckling character at intermediate k. For A2BX4

perovskites in the Cmca tilt system, from which the modulated

phases descend in the PA salts, the layer of octahedra becomes

significantly more rigid, leaving only two residual planes of

zero-frequency buckling modes (Fig. 9). The only pure tilts

remaining lie along the �þ2 –�4–Yþ2 line of compatibility. All

the modulated phases described to date for PA2BX4 show

ordering vectors that lie on one of the solutions predicted by

this approach. Despite the availability of pure tilts that could

condense at incommensurate wavevectors, it does not appear

that any such incommensurate structures have been reported

for the organic inorganic perovskites. For the true perovskites,

even in their highest symmetry, pure tilts are isolated in a

single line in k-space and are not volumetrically important in

the BZ.

When considered in isolation, the amines are effectively

rigid molecular cations with six degrees of freedom and the

only constraints that are imposed upon them are done so by

interactions with the concatenated inorganic anion layer. The

latter has a reduced degree of flexibility once tilted and it is

this more constrained component that limits the flexibility of

the entire system, by offering only a finite number of confor-

mations. It is notable that the results from this approach are

consistent with two of the more unusual features in the

PA2MnCl4 system.

This approach is not, however, capable of predicting which

of these possible wavevectors will actually cause a phase

transition. For that a more holistic approach, taking into

account the detailed interactions between both organic and

inorganic components, is required; organic–inorganic perovs-

kites display coupled tilt and orientational order–disorder

transitions associated with the two components.
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